Реферат На Тему Теплоэнергетика
- Скачать Реферат Бесплатно
- Реферат На Тему Теплоэнергетика України
- Скачать Рефераты
- Реферат На Тему Теплоенергетика
Существует неразрывная взаимосвязь и взаимозависимость условий обеспечения теплоэнергопотребления и загрязнения окружающей среды. Взаимодействие этих двух факторов жизнедеятельности человека и развитие производственных сил привлекает постепенное внимание к проблеме взаимодействия теплоэнергетики и окружающей среды. На ранней стадии развития теплоэнергетики основным проявлением этого внимания был поиск в окружающей среде ресурсов, необходимых для обеспечения теплоэнергопотребления и стабильного теплоэнергоснабжения предприятий и жилых зданий. В дальнейшем границы проблемы охватили возможности более полного использования природных ресурсов путём изыскания и рационализации процессов и технологии, добычи и обогащения, переработки и сжигания топлива, а также совершенствования теплоэнергетических установок. С ростом единичных мощностей блоков, теплоэнергетических станций и теплоэнергетических систем, удельных и суммарных уровней теплоэнергопотребления, возникла задача ограничения загрязняющих выбросов в воздушный и водный бассейны, а также более полного использования их естественной рассеивающей способности. На современном этапе проблема взаимодействия теплоэнергетики и окружающей среды приобрела новые черты, распространяя своё влияние на огромные территории, большинство рек и озёр, громадные объемы атмосферы и гидросферы Земли. Ещё более значительные масштабы развития теплоэнергопотребления в обозримом будущем предопределяют дальнейший интенсивный рост разнообразных воздействий на все компоненты окружающей среды в глобальных масштабах.
Принципиально новые стороны проблемы взаимодействия теплоэнергетики и окружающей среды возникли в связи с развитием ядерной теплоэнергетики. Важнейшей стороной проблемы взаимодействия теплоэнергетики и окружающей среды в новых условиях является всё более возрастающее обратное влияниеопределяющая роль условий окружающей среды в решении практических задач теплоэнергетики (выбор типа теплоэнергетических установок, дислокация предприятий, выбор единичных мощностей энергетического оборудования и многое другое). Основные понятия взаимодействия теплоэнергетики и окружающей среды. Теплоэнергетика является одной из основных составляющих энергетики и включает в себя процесс производства тепловой энергии, транспортировки, рассматривает основные условия производства энергии и побочные влияния отрасли на окружающую среду, организм человека и животных. Процесс производства тепловой энергии осуществляется на тепловых электрических станциях(ТЭС) и тепловых электрических централях(ТЭЦ). Эти два вида предприятий на данный момент являются основными поставщиками тепловой, а также электрической энергии, поскольку эти виды энергоресурсов очень тесно связаны. В настоящее время широкое применение находит способ поместная система снабжения тепловой энергией, которая применяется как на крупных промышленных предприятиях, так и для отопления жилых площадей.
Банк рефератов содержит более 364 тысяч. На тему: Теплоэнергетика. Заказать Реферат по Теплоэнергетика, теплотехника. Реферат на тему.
- Презентация на тему. И систем в теплоэнергетике. Каталоге лучших рефератов.
- Основные понятия взаимодействия теплоэнергетики и окружающей среды. Иерархия топливно-энергетического комплекса. Примесные выбросы объектов.
В соответствии с установившейся терминологией, теплоэнергетика включает в себя получение, переработку, преобразование, переработку, хранение и использование энергоресурсов и энергоносителей всех типов. Согласно определению, теплоэнергетика обладает развитыми внешними и внутренними связями и её развитие неотделимо от всех направлений жизнедеятельности человека, связанных с использованием энергии (в промышленности, сельском хозяйстве, строительстве, на транспорте и в быту). Развитие теплоэнергетики характеризуется ускорением темпов роста, изменением всех количественных показателей и структуры топливно-энергетического баланса, глобальным охватом всех видов ресурсов органического топлива, вовлечением в сферу использованием ядерного горючего. В общем случае различаются четыре основные стадии трансформации первичных тепловых ресурсов (от их природного состояния, находящегося в динамическом равновесии с окружающей средой, до конечного использования). Извлечение, добыча или прямое использование первичных природных ресурсов тепловой энергии. Переработка (облагораживание) первичных ресурсов до состояния, пригодного для преобразования или использования.
Преобразование связанной энергии переработанных ресурсов в тепловую энергию на тепловых станциях (ТЭС), централях (ТЭЦ), на котельных. Использование энергии. Несмотря на единство всех этих стадий, каждая из них основана на различных физических, физико-химических и технологических процессах, различающихся по масштабам, времени функционирования и другим признакам. Развитие теплоэнергетики оказывает воздействие на различные компоненты природной среды: на атмосферу (потребление кислорода воздуха (О2), выбросы газов, паров, твёрдых частиц), на гидросферу (потребление воды, переброска стоков, создание новых водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов), на литосферу (потребление ископаемых топлив, изменение водного баланса, изменение ландшафта, выбросы на поверхности и в недра твёрдых, жидких и газообразных токсичных веществ).
В настоящее время это воздействие преобретает глобальный характер, затрагивая все структурные компоненты нашей планеты. Важнейшими факторами функционирования окружающей среды является живое вещество биосферы, которое играет существенную роль в естественном круговороте почти всех веществ. Однако в большинстве процессов мы не можем проследить прямых воздействий теплоэнергетики на живое вещество, но должны учитывать это влияние в результате воздействия на отдельные компоненты окружающей среды и животный мир, где воздействие теплоэнергетики складывается со всеми другими антропогенными воздействиями. Взаимодействие теплоэнергетики и окружающей среды происходит во всех стадиях иерархии топливно-энергетического комплекса: добыче, переработке, транспортировке, преобразование и использование тепловой энергии. Это взаимодействие обусловлено как способами добычи, переработки и транспортировки ресурсов, связанных с воздействием на структуру и ландшафты литосферы, потребление и загрязнение вод морей, озёр, рек, изменением баланса грунтовых вод, выделением теплоты, так и использованием тепловой энергии от источников.
Ресурсы окружающей среды. В современном понимании под ресурсами, поддающимся качественному и количественному описанию, подразумеваются все природные источники, на которые осуществляется воздействие человека, причём знак этого воздействия бывает как положительным, так и отрицательным.
Обеспеченность ресурсами является основой функционирования теплоэнергетики и всей энергетики в целом в конкретных условиях. До настоящего времени обычно рассматривалась в различных аспектах обеспеченность теплоэнергетики только первичными топливными ресурсами. Но влияние на энергетику оказывают и многие другие компоненты атмосферы, гидросферы, литосферы, которые тоже необходимо принимать во внимание. Развитие теплоэнергетики, как общей системы использования природных ресурсов началось в начале текущего столетия. Долгое время основным источником тепловой энергии во всём мире были дрова, мускульная энергия людей и скота.
Коренное изменение структуры теплопотребления произошло в 20 веке. Применение двигателей внутреннего сгорания в промышленной теплоэнергетике, в морском и автомобильном транспорте, в сельском хозяйстве, а затем и в авиации вызвали развитие добычи и переработки нефти. Для бытовых и промышленных целей стало использоваться газовое топливо, как более дешевое, удобное в эксплуатации и удешевляющее котельное оборудование. С середины текущего столетия прирост телоэнергопотребления происходит преимущественно за счёт этих двух видов ресурсов (1990 год: Нефть-0, 03 млрд. Ут.; Уголь0, 73 млрд. Ут., 1975 год: Нефть-4, 04, Природный газ-1, 69, Уголь-2, 63 млрд.
Важнейшим событием явилось открытие путей использования ядерной энергии. Наряду с органическим топливом, ядерное топливо относится к категории невозобновляемых энергетических ресурсов, в отличии от возобновляемых, к которым относятся: лучистая энергия Солнца, механическая энергия речных стоков, приливов, волн и ветров, тепловая энергия земных недр (геотермальная энергия) и тепловая энергия, основанная на температурном градиенте разных слоёв воды мирового океана.
Органическое топливо70-90% приходится на угли (извлекаемость 30-60%). Геологические ресурсы каменного угля7, 5-14, 0 трлн. Т., (извлекаемость 1, 0-2, 4 трлн. Наиболее динамично изменяются представления о ресурсах нефти и природного газа(извлекаемость 80-110 млрд.
) и (700-1100 млрд. Геологические ресурсы нефти, природного газа800 трлн. Ядерное топливо: суммарные запасы урана, доступные извлечению из недр, оцениваются в 66, 16 млн. Т., ресурсы дейтерия сосредоточенные в атмосфере практически неисчерпаемы. Потенциальные ресурсы ядерного топлива по тепловому эквиваленту значительно превосходят суммарные ресурсы всех видов органического топлива. Возобновляемые ресурсы: энергия недр Земли, космического излучения и излучения Солнца, а также их производные в виде преобразованной или аккумулированной энергии. Технологическая карта блюд. Из наиболее перспективных источников энергии этой группы могут быть названы: энергия Солнца, гидроэнергия (энергия стока рекнаиболее освоена и широко применяется), энергия ветра.
Примесные выбросы теплоэнергетических объектов и их распространение. В первую очередь при анализе взаимодействия теплоэнергетики и окружающей среды должны быть рассмотрены элементарные процессы происходящие при сжигании топлива (в особенности органического), так как при его сжигании образуется большое количество вредных соединений (оксиды азота, серы, сажа, соединения свинца, водяной пар).
Различные компоненты продуктов сгорания топлива, выбрасываемые в атмосферу, гидросферу, литосферу и во время пребывания ведущие себя по-разному (изменяется t, свойства)называются примесными выбросами. При выходе в атмосферу, выбросы содержат продукты реакций в твёрдой, жидкой и газообразной фазах. Изменение состава выбросов После их выпадения могут проявляться в виде: осаждения тяжёлых фракций, распада на компоненты по массе и размерам, химических реакций с компонентами воздуха, взаимодействием с воздушными течениями, с облаками, с атмосферными осадками, фотохимические реакции. В результате, состав выбросов может существенно измениться, могут появиться новые компоненты, поведение и свойства которых (в частности, токсичность, активность, способность к новым реакциям) могут значительно отличаться от данных. Газообразные выбросы образуют соединения углерода, серы и азота. Оксиды азота практически не взаимодействуют с другими веществами в атмосфере и время их существования почти не ограничено. Сернистый ангидрид (SO2)один из токсичных газообразных выбросов теплоэнергоустановок, с небольшой продолжительностью пребывания в атмосфере, в присутствии кислорода воздуха (О2) доокисляется до SO3 и, вступая в реакцию с водой(Н2О)образует слабый раствор серной кислоты (Н2SO4).
В процессе горения в атмосфере кислорода воздуха азот, в свою очередь образует ряд соединений:N2O, NO, N2O3, NO2, N2O4 и N2O5. В присутствии влаги NO2 легко вступает во взаимодействие с кислородом воздуха, образуя азотную кислоту (НNO3). Неуклонный рост поступлений токсичных веществ в окружающую среду, прежде всего отражается на здоровье населения Земли, ухудшает качество продукции сельского хозяйства, снижает урожайность, оказывает влияние на климатические условия отдельных регионов мира, состояние озонового слоя Земли, приводит к гибели флоры и фауны.
Можно выделить несколько основных групп наиболее важных взаимодействий теплоэнергоустановок с конденсированными компонента ми окружающей среды. Водопотребление и водоиспользование, обуславливающее изменение естественного материального баланса водной среды(перенос солей, питательных веществ). Осаждение на поверхности твёрдых выбросов продуктов сгорания органических топлив из атмосферы, вызывающее изменение свойств воды, её цветности, альбедо. Выпадение на поверхности в виде твёрдых частиц и жидких растворов продуктов выброса в атмосферу, в том числе: кислот и кислотных остатков, металлов и их соединений, канцерогенных веществ. Выбросы непосредственно на поверхность суши и воды продуктов сжигания твёрдых топлив(зола, шлаки), а также продуктов продувок, очистки поверхностей нагрева (сажа, зола). Выбросы на поверхность воды и суши твёрдых топлив при транспортировке, переработке, перегрузке. Выбросы твёрдых и жидких радиоактивных отходов, характеризуемых условиями их распространения в гидросфере и литосфере.
Выбросы теплоты, следствиями которых могут быть: постоянное локальное повышение температуры в водоёме, временное повышение температуры, изменение условий ледосостава, зимнего гидрологического режима, изменение условий паводков, изменение распределения осадков, испарений, туманов. Создание водохранилищ в долинах рек или с использованием естественного рельефа поверхности, а также создание искусственных прудов-охладителей, что вызывает: изменение качественного и качественного и количественного состава речных стоков, изменение гидрологии водного бассейна, увеличения давления на дно, проникновение влаги в разломы коры и изменение сейсмичности, изменение условий рыболовства, развития планктона и водной растительности, изменение микроклимата, изменение условий отдыха, спортивных занятий, бальнеологических и других факторов водной среды. Изменение ландшафта при сооружении разнородных теплоэнергетических объектов, потребление ресурсов литосферы, в том числе: вырубка лесов, изъятие из сельскохозяйственного оборота пахотных земель, лугов, взаимодействие берегов с водохранилищами.
Воздействие выбросов, выносов и изменение характера взаимодействия водных бассейнов с сушей на структуру и свойства континентальных шлейфов. Примесные загрязнения могут суммарно воздействовать на естественный круговорот и материальные балансы тех или иных веществ между атмосферой, гидросферой и литосферой. Из анализа общих схем взаимодействия теплоэнергетических установок с окружающей средой, следует, что основным фактором взаимодействия ТЭЦ и ТЭС с водной средой является потребление воды системами технического водоснабжения, в том числе безвозвратное потребление воды.
Основная часть расхода воды в этих системах на охлаждение конденсаторов паровых турбин. Остальные потребители технической воды (системы золо- и шлакоудаления, химводоочистки, охлаждения и промывки оборудования) потребляют 7% общего расхода воды, являясь при этом, основным источником примесного загрязнения. АЭС воздействуя на водный бассейн, в то же время влияют на некоторые растения и вещества (растворённые в воде и содержащиеся в данных отложениях), некоторые из них накапливают радиоактивные изотопы в концентрациях, на несколько порядков превышающих равновесные в окружающей воде. При существующих условиях воздействия ядерной теплоэнергетики на гидросферу (и методах контроля выбросов) освоенные типы ядерных теплоэнергетических установок не представляют собой угрозы нарушения локальных и глобальных равновесных процессов в гидросфере и её взаимодействие с другими оболочками Земли (за исключением аварийных ситуаций, вызывающих загрязнение окружающей среды радиоактивными веществами). Все другие виды воздействия АЭС на гидросферу.
Реферат: Теплоэнергетика Название: Теплоэнергетика Раздел: Тип: реферат Добавлен 07:16:38 18 июня 2005 Просмотров: 6006 Комментариев: 4 Оценило: 2 человек Средний балл: 4.5 Оценка: неизвестно Министерство просвещения и образования РФ Заозерно-архитектурно художественного лицея №16. На тему: Теплоэнергетика. Выполнили ученики 10А класса: Куваркин А. Проверил преподаватель: Завьялова Г.М.
Введение2 1.Законы термодинамики.4 2.Виды тепловых двигателей7 3.Перспективные разработки.8 4.Термодинамика теплового двигателя.9 5.Работа двигателя.12 6.Схема двигателя14 7.Экологические проблемы тепловой энергетики.15 8.Ресурсы окружающей среды.21 9.Влияние вредных выбросов ТЭС и ТЭЦ на атмосферу.23 10.Способы снижения загрязняющих выбросов.26 12. Цикл Карно.27 Введение. Существует неразрывная взаимосвязь и взаимозависимость условий обеспечения теплоэнергопотребления и загрязнения окружающей среды.
Взаимодействие этих двух факторов жизнедеятельности человека и развитие производственных сил привлекает постепенное внимание к проблеме взаимодействия теплоэнергетики и окружающей среды. На ранней стадии развития теплоэнергетики основным проявлением этого внимания был поиск в окружающей среде ресурсов, необходимых для обеспечения теплоэнергопотребления и стабильного теплоэнергоснабжения предприятий и жилых зданий. В дальнейшем границы проблемы охватили возможности более полного использования природных ресурсов путём изыскания и рационализации процессов и технологии, добычи и обогащения, переработки и сжигания топлива, а также совершенствования теплоэнергетических установок.
С ростом единичных мощностей блоков, теплоэнергетических станций и теплоэнергетических систем, удельных и суммарных уровней теплоэнергопотребления, возникла задача ограничения загрязняющих выбросов в воздушный и водный бассейны, а также более полного использования их естественной рассеивающей способности. На современном этапе проблема взаимодействия теплоэнергетики и окружающей среды приобрела новые черты, распространяя своё влияние на огромные территории, большинство рек и озёр, громадные объемы атмосферы и гидросферы Земли. Ещё более значительные масштабы развития теплоэнергопотребления в обозримом будущем предопределяют дальнейший интенсивный рост разнообразных воздействий на все компоненты окружающей среды в глобальных масштабах. Принципиально новые стороны проблемы взаимодействия теплоэнергетики и окружающей среды возникли в связи с развитием ядерной теплоэнергетики.
Важнейшей стороной проблемы взаимодействия теплоэнергетики и окружающей среды в новых условиях является всё более возрастающее обратное влияние определяющая роль условий окружающей среды в решении практических задач теплоэнергетики (выбор типа теплоэнергетических установок, дислокация предприятий, выбор единичных мощностей энергетического оборудования и многое другое). Законы термодинамики. Первый закон термодинамики 1. Из закона сохранения и превращения энергии следует, что изменение DW энергии системы равно сумме работы А', совершенной над ней внешними телами, и сообщенного eй тепла Q: DW = Q + A' Q = DW + A где A - работа, совершаемая системой над внешними телами.
При этом предполагается, что Q, DW, А и А' измерены в единицах одной системы. В термодинамике обычно рассматриваются макроскопически неподвижные системы, для которых изменение полной энергии равно изменению внутренней энергии, так что Q = DU + A. Тепло, сообщенное системе, расходуется на увеличение ее внутренней энергии и на совершение системой работы против внешних сил (первый закон термодинамики).
Если система представляет собой периодически действующую машину, в которой газ, пар или другое рабочее тело в результате совершения кругового процесса возвращается в исходное состояние, то DU = 0 и A = Q. Следовательно, нельзя построить периодически действующий двигатель, который совершал бы работу, большую подводимой к нему извне энергии (вечный двигатель первого рода невозможен). Второй закон термодинамики 1. Первый закон термодинамики, выражающий всеобщий закон сохранения и превращения энергии, не позволяет определить направление протекания термодинамических процессов. Например, основываясь на этом законе, можно было бы пытаться построить вечный двигатель второго рода, т. Двигатель, рабочее тело которого, совершая круговой процесс, получало бы энергию в форме тепла от одного внешнего тела и целиком передавало бы ее в форме работы другому внешнему телу. Обобщение результатов многочисленных экспериментов привело к выводу о невозможности построения вечного двигателя второго рода.
Этот вывод называется вторым законом термодинамики и имеет ряд формулировок, различных по форме, но эквивалентных по существу, в частности: а) невозможен процесс, единственным результатом которого является превращение тепла, полученного от нагревателя, в эквивалентную ему работу; б) невозможен процесс, единственным результатом которого является передача энергии в форме тепла от холодного тела к горячему. Второй закон термодинамики указывает на существенное различие двух форм передачи энергии - теплоты и работы. Он утверждает, что процесс преобразования упорядоченного движения тела как целого в неупорядоченное движение частиц самого тела и внешней среды является необратимым. Упорядоченное движение может переходить в неупорядоченное без каких-либо дополнительных (компенсирующих) процессов, например при трении.
В то же время обратный переход неупорядоченного движения в упорядоченное, или, как часто неточно говорят, «переход тепла в работу», не может являться единственным результатом термодинамического процесса, т. Всегда должен сопровождаться каким-либо компенсирующим процессом. Например, при равновесном, изотермическом расширении идеальный газ совершает работу, которая полностью эквивалентна теплу, переданному газу нагревателем. Однако плотность газа при этом уменьшается, т. «превращение тепла в работу» не является единственным результатом рассматриваемого процесса.
Тепловой двигатель, работающий по прямому циклу Карно, совершает работу, эквивалентную лишь части полученного от нагреватели тепла, так как остальная часть последнего отдается холодильнику, состояние которого вследствие этого изменяется. В холодильной машине тепло передается от холодного тела к горячему. Однако дли осуществления этого процесса необходим компенсирующий процесс совершения работы внешними телами. Виды тепловых двигателей. Тепловые двигатели - машины, в которых внутренняя энергия топлива превращается в механическую энергию. Виды двигателей: -паровая машина, -двигатель внутреннего сгорания, -паровая и газовая турбины, -реактивный двигатель.
Перспективные разработки. По данным агенства экономических новостей, наиболее перспективными разработками в настоящее время являются термомагнитный двигатель и тепловой двигатель с внешним подводом теплоты. Термомагнитный двигатель выгодно отличается простой конструкцией, в котором тепловая энергия горячих газов, получаемых от сгорания топлива, переходит в механическую энергию за счет фазового перехода материала ротора из магнитного состояния в немагнитное и обратно. Двигатель может иметь коэффициент полезного действия выше, чем у двигателей внутреннего сгорания и для своей работы может даже использовать низкотемпературные газы (порядка 100 град. С), которые другие двигатели не могут использовать совсем или использовать с меньшей эффективностью.
Используя горячие газы, полученные сжиганием жидкого или газообразного топлива, предложенный двигатель может заменять двигатели внутреннего сгорания. Однако новый двигатель гораздо проще по конструкции и работает без шума, что является его большим достоинством. Новый двигатель может также работать используя горячие газы, являющиеся отходами при работе различных высокотемпературных агрегатов: металлургических печей, котельных установок и т.п. Рассматриваемый ниже двигатель с внешним подводом теплоты предназначен для утилизации тепловой энергии горячих газов, являющихся отходами различных производств и процессов.
Извлеченное тепло двигатель превращает в механическую работу, которая с помощью электрогенератора может быть превращена в электроэнергию. В современном производстве тепловых отходов в виде газов горячих очень много. Это горячие газы, выходящие из металлургических печей, котельных установок разного рода, газы в трубах систем отопления.
Наиболее перспективным применением двигателя является использование его в частных домах в районах с холодным климатом (Север РФ, Сибирь, Аляска, Канадский Север, Скандинавия). В этом случае тепло отходящих газов системы отопления будет использовано для обеспечения дома электроэнергией. Двигатель также может приводить в движение насос для подачи в дом воды из реки.
Рассматриваемый двигатель разработан в Екатеринбурге Конюховым Дмитрием Леонидовичем и не имеет зарубежных аналогов. Термодинамика теплового двигателя. В настоящий момент для двигателей с внешним подводом теплоты наиболее известен термодинамический цикл Стирлинга, состоящий из двух изотерм и двух изохор. Но возможно применение и других термодинамических циклов в подобных двигателях.
Рассмотрим идеальный термодинамический цикл с изотермическим сжатием и адиабатическим расширением некого гипотетического двигателя. 1 приведен такой идеальный термодинамический цикл, показанный в pV координатах. Идеальный термодинамический цикл В цикле принят изохорический процесс подвода теплоты так как, его термический КПД больше изобарического. Для упрощения расчетов, изохорический процесс 2–3 показан прямой линией.
Термический КПД цикла по pV-диаграмме рис. 2: где: P - степень повышения давления; Q – показатель адиабаты; T – степень сжатия. Как видно из формулы (1) термический КПД такого цикла зависит от отношения температур холодильника и нагревателя.
Например, при T 3 = 1173K; T 1 = 337K;? = 3,5 термический КПД цикла составит 0,55. Что, при прочих равных условиях, сопоставимо с термическим КПД цикла Стирлинга. Но в реальном двигателе добиться, чтобы он работал по такому циклу конечно трудно, поэтому обобщенный термодинамический цикл реального двигателя будет выглядеть так, как показано на рис. Реальный термодинамический цикл Работа двигателя. Для объяснения принципа работы ДВПТ по циклу с изохорическим сжатием и адиабатическим расширением воспользуемся рис.
Принцип работы ДВПТ Такт впуска (рис. В верхней мертвой точке (ВМТ) открывается клапан расположенный в поршне и при движении поршня к нижней мертвой точке (НМТ) рабочее тело, с давлением p 1 и температурой T 1, поступает в цилиндр. В НМТ клапан в поршне закрывается. Такт сжатия (рис. При движении поршня к верхней мертвой точке (ВМТ) происходит сжатие рабочего тела, при этом выделяющаяся в процессе сжатия теплота Q 1 (см. 1) рассеивается в окружающей среде, вследствие этого температура стенки цилиндра, а, следовательно, и температура рабочего тела поддерживается постоянной и равной T 1.
Давление рабочего тела возрастает и достигает значения p 2. Такт расширения (рис. В процессе нагревания теплота через стенку цилиндра передается рабочему телу.
При мгновенном подводе теплоты Q 2 к рабочему телу давление и температура в цилиндре возрастают, соответственно до p 3 и T 3. Рабочее тело воздействует на поршень и перемещает его к НМТ. В процессе адиабатного расширения рабочее тело производит полезную работу, а давление и температура уменьшаются до p 1 и T 1. Такт выпуска (рис. При движении поршня к ВМТ в цилиндре открывается клапан и через него осуществляется выпуск рабочего тела из цилиндра, с давлением p 1 и температурой T 1. В НМТ клапан в цилиндре закрывается. Цикл замыкается.
Схема двигателя. Схема работы ДВПТ В двигателе такты сжатия и расширения осуществляются в разных цилиндрах, соответственно компрессионном 1 и расширительном 2. Цилиндры 1 и 2 связаны между собой через компрессионную 3 и расширительную 4 магистрали. В компрессионной магистрали 3 находится охладитель 5, а в расширительной магистрали 4 находится нагреватель 6.
Компрессионная магистраль 3 подключена к компрессионному цилиндру 1 через выпускной клапан 7, а к расширительному цилиндру 2 через впускной клапан 8. Расширительная магистраль 4 подключена к расширительному цилиндру 2 через выпускной клапан 9, а к компрессионному цилиндру 1 через впускной клапан 10. Поршни 11 и 12 цилиндров 1 и 2 связаны с валом двигателя 13 через механизм преобразования движения 14. Экологические проблемы тепловой энергетики. За счет сжигания топлива (включая дрова и другие биоресурсы) в настоящее время производится около 90% энергии. Доля тепловых источников уменьшается до 80-85% в производстве электроэнергии. При этом в промышленно развитых странах нефть и нефтепродукты используются в основном для обеспечения нужд транспорта.
Например, в США (данные на 1995 г.) нефть в общем энергобалансе страны составляла 44%,а в получении электроэнергии -только 3%. Для угля характерна противоположная закономерность: при 22% в общем энергобалансе он является основным в получении электроэнергии 52%). В Китае доля угля в получении электроэнергии близка к 75%, в то же время в России преобладающим источником получения электроэнергии является природный газ (около 40%), а на долю угля приходится только 18% получаемой энергии, доля нефти не превышает 10%. В мировом масштабе гидроресурсы обеспечивают получение около 5-6% электроэнергии (в России 20,5%), атомная энергетика, дает 17-18% электроэнергии. В России ее доля близка к 12%, а в ряде стран она является преобладающей в энергетическом балансе (Франция - 74%, Бельгия -61%, Швеция - 45%).
Скачать Реферат Бесплатно
Сжигание топлива - не только основной источник энергии, но и важнейший поставщик в среду загрязняющих веществ. Тепловые электростанции в наибольшей степени «ответственны» за усиливающийся парниковый эффект и выпадение кислотных осадков. Они, вместе с транспортом, поставляют в атмосферу основную долю техногенного углерода (в основном в виде СО2), около 50% двуокиси серы, 35% - окислов азота и около 35% пыли. Имеются данные, что тепловые электростанции в 2-4 раза сильнее загрязняют среду радиоактивными веществами, чем АЭС такой же мощности.
В выбросах ТЭС содержится значительное количество металлов и их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. КВт содержится алюминия и его соединений свыше 100 млн. Доз, железа-400 млн. Доз, магния -1,5 млн. Летальный эффект этих загрязнителей не проявляется только потому, что они попадают в организмы в незначительных количествах.
Это, однако, не исключает их отрицательного влияния через воду, почвы и другие звенья экосистем. Можно считать, что тепловая энергетика оказывает отрицательное влияние практически на все элементы среды, а также на человека, другие организмы и их сообщества.
В обобщенном виде эти воздействия представлены в таблице. Технологический процесс Влияние на элементы среды и биоту Примеры цепных реакций воздух почвы и грунты воды экосистемы и человека 1 2 3 4 5 6 Добыча топлива: -жидкое (нефть) и в виде газа Углеводо-родное загрязнение при испарении и утечках Повреждение или уничтожение почв при разведке и добыче топлива, передвижениях транспорта и т.п.; загрязнение нефтью, техническими химикатам, Металлолом и др. Отходами Загрязнение нефтью в результате утечек, особенно при авариях и добычах со дна водоемов, загрязнение технологическими химреагентами и другими отходами; разрушение водоносных структур в грунтах, откачка подземных вод их сброс в водоемы Разрушение и повреждение экосистем в местах добычи и при обустройстве месторождений(дороги, линии электропередач, водопроводы и т.п.), загрязнение при утечках и авариях, потеря продуктивности, ухудшение Качества продукции. Воздействие на человека в основном через биопродукцию (особенно гидробионтов). Загрязнение почв- загрязнение вод нефтью и химреагентами - гибель планктона и других групп организмов - снижение рыбопродукгивности - потеря потребительских или вкусовых свойств воды и продуктов промысла -твердое: угли, сланцы торф и т.п.) Пыль при взрывных и других работах, продукты горения терриконов и т.п.
Разрушение почвы и грунтов при добыче открытыми методами (карьеры), просадки рельефа, разрушение грунтов при шахтных методах добычи Сильное нарушение водоносных структур, откачка и сброс в водоемы шахтных, часто высокоминера-лизированных, железистых и других вод Разрушение экосистем или их элементов, особенно при открытых способах добычи, снижение продуктивности, воздействие на биоту и человека через загрязненные воздух, воды и пищу. Плохо Средне Хорошо Отлично Комментарии: Рефераты суперские! Сделай паузу, студент, вот повеселись: Самый реальный вред от курения - это когда выходишь покурить, а соседи по общаге сожрали твои пельмени. Кстати, анекдот взят с chatanekdotov.ru Лопух 11:02:26 09 июля 2017 Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com Евгений 21:46:14 18 марта 2016 Кто еще хочет зарабатывать от 9000 рублей в день 'Чистых Денег'? Узнайте как: business1777.blogspot.com!
Реферат На Тему Теплоэнергетика України
Cпециально для студентов! 15:09:26 24 ноября 2015 Кто еще хочет зарабатывать от 9000 рублей в день 'Чистых Денег'? Узнайте как: business1777.blogspot.com!
Скачать Рефераты
Реферат На Тему Теплоенергетика
Cпециально для студентов! 13:48:18 24 ноября 2015.